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Asymptotic Distributions of Continuous-Time Random 
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We provide a systematic analysis of the possible asymptotic distributions of 
one-dimensional continuous-time random walks (CTRWs) by applying the limit 
theorems of probability theory. Biased and unbiased walks of coupled and 
decoupled memory are considered. In contrast to previous work concerning 
decoupled memory and L6vy walks, we deal also with arbitrary coupled 
memory and with jump densities asymmetric about its mean, obtaining asym- 
metric L6vy-stable limits. Suprisingly, it is found that in most cases coupled 
memory has no essential influence on the form of the limiting distribution. We 
discuss interesting properties of walks with an infinite mean waiting time 
between successive jumps. 

KEY WORDS: Random walks; coupled memory; asymptotic distributions; 
L6vy-stable distributions. 

1. I N T R O D U C T I O N  

A cont inuous- t ime random walk (CTRW) is a walk with random waiting 
times T; between successive random jumps  R/. This not ion was introduced 
in a paper of Montrol l  and Weiss. t~ Since then it has been studied exten- 
sively and applied, for instance, to fully developed turbulence, t3" 41 transport  
in disordered or fractal media, t5-71 intermit tent  chaotic systems, tS" ~0~ and 
relaxation phenomena/1Lj2~ The common feature of these applications 
is that they exhj'bit anomalous  diffusion, which is manifested by a non-  
linear time dependence of the mean square displacement. The signature of 
the anomalous  diffusion is also a non-Gauss ian  asymptotic distr ibution 
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(propagator, diffusion front) of distance R, reached up to a large time t by 
a particle initially at the origin. Usually, the analysis of the asymptotic 
distribution is based on a formal expression for the Fourier-Laplace trans- 
form of R,, but a useful, explicit inversion formula has been provided only 
under some restrictive assumptions on spatiotemporal coupling. In general, 
the ith jump R~ of CTRW depends on its waiting time T,. in an arbitrary 
way, yielding both decoupled and a class of various coupled memory 
CTRWs. In most analyses ~3-~5~ the asymptotic distribution of R, was 
derived for independent (i.e., decoupled) R~ and T~. Also, the specific case 
of the L6vy walk has been analyzedJ 16-181 

In this paper we present a straightforward probabilistic approach in 
terms of random variables R; and T,., applying limit theorems of proba- 
bility theory directly. This allows us to: 

1. Assume any dependence between the random jump R; and its 
waiting time T,., including the cases of L~vy walk and decoupled memory 
discussed in the literature. ~3-~8~ 

2. Consider random walks with continuous as well as discrete 
variables R i and Ti. 

3. Deal also with probability densities f(r) of the jumps Ri which are 
asymmetric about the mean (or median if the mean does not exist), which 
is in contrast to previous work focusing only on the case of symmetric 
random walks. 

4. Include in the considerations biased and unbiased walks, i.e., 
include jump densities f(r) with an arbitrary mean, which we denote by/z. 

The aim of this paper is to investigate the possible forms of asymptotic 
distributions of distance R, reached by a particle up to moment t, as 
t--* oo, under the most general conditions 1-4. This completes and unifies 
the results which have appeared in several papers. It3--'61 The considerations 
presented below lead also to a derivation of the normalizing constants ci 
(prefactors) in the limiting procedure which are very useful in computer 
simulations but have not been derived in explicit form before. 

This paper is organized as follows. Section 2.1 contains the description 
of CTRW in terms of random variables Ri, T~. Section 2.2 provides a 
detailed exposition of the parameters and distributions which are necessary 
in Table I to summarize the limiting behavior of R, in different cases. 
Section 3 is devoted to the derivation of the results. In Section 3.3 and in 
the last part of Section 3.2 we discuss interesting properties of the case 
which assumes that the mean of the waiting times T~ is infinite. 
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2. ASYMPTOTIC  BEHAVIOR 

2.1. The CTRW as a Random Sum 

Let us consider a continuous-time random walk described by means of 
two sequences of random variables R; and T~, jump distances and waiting 
time intervals, respectively, with a particle starting at point Ro---0 at time 
To = 0. For simplicity we restrict our attention to one-dimensional walks. 
The first instantaneous jump of random length R~ takes place after a 
random waiting time T~, then the second instantaneous jump R2 after time 
T,_, etc. (see Fig. 1 ). In general, the ith jump R; may depend on its waiting 
time Ti in an arbitrary way, but the pair (R;, Ti) is independent of the 
preceding and succeeding pairs of jumps and its waiting times (R k, Tk). 
The special case when Rg is independent of T i is called a decoupled memory 
CTRW, as opposed to the coupled one with R~ depending on T,. It is 
evident that the model is entirely determined by ~b(r, t), a two-dimensional 
joint probability density of the pair (R i ,  Ti) , the same for each i~> 1. The 
function @(r, t) can be any density on the half-plane - o o  < r < oo, t ~> 0. 
The marginal densities f ( r )  of Rj and g(t )  of Ti are 

f ( r )  = ~k(r, t) dt, g( t)  = d/(r, t) dr ( 1 ) 
- -cr .~ 

When the function f ( r )  does not contain the Dirac delta component then 
the jump R~ has a continuous distribution. If f (r) is a linear combination 
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Fig. 1. Single realization of a continuous-time random walk. 
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of Dirac delta functions, a discrete (lattice) distribution of Ri is obtained. 2 
In this paper  we will be interested in finding for large t the asymptot ic  

distribution of position R, of  the particle at t ime t. The probability densiO~ 
of R, will be denoted by p,(r). Define the r andom variable N, as the 
number  of  j umps  in the time interval [0, t ] ,  

N,=max {k: ~ T~<<.t} ( 2 )  
i = 0  

It is clear that  posit ion R, of  the particle at t ime t is equal to a r andom sum 
of N, successive r andom jumps  R;, 

Nt 

n,  = n; (3) 
i = 0  

Note that  formula (3) holds also for r andom walks when the waiting time 
intervals are n o n r a n d o m  and take a constant  value. 

2.2. Summary  of the Results 

For  the reader 's  convenience we summarize  in Table I the results 
whose derivation is presented in Section 3. The  constant  r = < T;> denotes 
the mean waiting time and p = < R i )  is the mean single j u m p  distance 
(provided that  it exists), called later the bias. 

The parameters  ct,/~ take the constant  values 

a = 2  and / ? = 0  if <R~> is finite (4) 

or, if <R,.-') is infinite, the parameters  a , /~ describe the tails of  the density 
f(r)  of the j ump  distances Ri [cf. Eq. (1)]  as follows: 

f ( - r )  + f ( r )  ~ br - ~ -  1 and 
f ( , ' )  1 + f l  

- -  ( 5 )  
f ( - r )  +f(r)  2 

for r ~ ~ ,  where b is a constant  called later a magnitude coefficient of the 
density f ( r )  and 0 < 0 ~ < 2 ,  - 1  ~<fl~<l. F r o m  condition (5) it may be 
concluded that 

f ( - r ) ~ b ~ - f l - r  -~ - '  
�9 1 + f l  - ~ - 1  

and f (r)  ~ b T r 

2 In the probabilistic literature only absolutely continuous distributions, in contrast to discrete 
and singular ones, are said to have a density function; see, for instance, ref. 9. 
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Table I. Asymptotic Behavior of the Displacement R t for a CTRW" 

o( > 1, i.e., a finite mean waiting time r 

0<~<1,  any median of R~ 
1 < ~ < 2 ,  p = 0  

ct=2, p = 0  

1 <~<2, lt~O,~<~' 

1 <~<2, p~O,~>o~' 

1 <~<2, p r  

~=2, p ~0,~=~'  

( )_ . lim Pr ~<r -S~p(I) 

R, 
lim, Pr ( ~ r )  = ~(r) 

[R,-(tlr)p ~ ,lira_. rr t. ~ <-..r)=S~.,(rj 

. . . .  Pr {R,II~-(t/r) ) 
lira \ tli.c3 <r =S:.._l(r) 

f R , - ( , i ~ ) ~  _ "~ ~ , ,  ,lim rr t. ~ ~r)  =3,/sitr, 

f R,-(tl~)i, "k . . . .  im r r ( . ~  ~<r/=~lrj  
. . . .  \ fir)-c4 / 

0 < ~' < 1, i.e., an infinite mean waiting time 

l<ct~<2, p + 0  lim rrtt~-~.6<,'j=H,.(,') 

0<~<1,  any median ofR~ lim Pr ~<r =U(r) 
1 <oc~<2, p = 0  ' - ":' 

The notation is explained in Section 2.2. In all cases coupled as well as decoupled memories 
are assumed, except in the last one, where the limiting distribution U(r) only for the 
decoupled memory is obtained [cf. Eqs. (36)-(38)]. 

which shows that the parameter fl governs the asymmetry of  the tails of  
f ( r ) .  Note  that f l =  0 is equivalent, in the limit, to symmetry of  the tails. 
Equations (4) and (5) are equivalent to the statement that the density f ( r )  
belongs to the domain o f  attraction ~ of the standard L6vy-stable density 
s~./j(r) with 0<ct~<2 and - 1  ~<f l~ l  [see Eq. (15) below]. Observe that 
the density s_,. p ( r )=  s2. o(r) for any fl and is equal to the Gauss(an one with 
mean 0 and variance 2. In the following we exclude the case �9 = 1, fl #: 0 
because densities s,~(r) with f ld :0  have peculiar properties and some 
authors even do not consider them to be L6vy-stable (cf. ref. 2, p. 23). 

The parameter  a '  takes the constant value 

& = 2  if (T,.-') isfinite (6) 
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or, if ( T ~ )  is infinite, the parameter ~' describes the tail of the density g(t)  
of the waiting time interval 7",. [cf. Eq. (1)] as follows: 

g(t). .~b't  -~ ' - l  (7) 

for t ~  ~ ,  where b' is the magnitude coefficient of g(t)  and 0 < ~ '  <2. 
Equations (6) and (7) are equivalent to the statement that the density g(t)  
belongs to the domain of attraction of the standard L~vy-stable density 
s~,.~(t) (note that the second parameter equals 1 because T~>0) when 
0 < 0~'< 2 or the Gaussian density s_,. o(t) when ~ ' =  2. 

The normalizing constants c~ ..... c7 (prefactors) given in Section 3 are 
functions of the parameters ~, 0( and the magnitude coefficients b, b' intro- 
duced in Eqs. (4--7). 

The distribution function S~.p(r) of the standard L~vy-stable density 
s~.p(r) [cf. Eq. (15) below] equals 

Moreover, 

f 
t .  

S..p(r) = s~.p(x) dx (8) 

i 
r 

r = (2n)-1/2 exp(--X2/2) dx (9) 
- - ,zr~ 

denotes the Gaussian law with mean 0 and variance 1, 

(1) H . , ( r ) = I - - S ~ , , I  r-- ~ , r > 0  and H~,(r)=0, r~<0 (10) 

denotes the "inverse" L6vy-stable distribution function [cf. also Eq. (34) ] 
and U(r) is the distribution function defined in the integral formula (38) 
below. 

For comparison, we list, using our notation the cases which have been 
investigated in the literature: 

1. Tunaleyl~3~: ~ = 2, fl = 0, p = 0 or p ~ 0 for decoupled memory. 

2. Shlesinger, Klafter, and Wong~41: 0<0~<2, f l=0 ,  p = 0  for 
decoupled memory. 

3. Weissman, Weiss, and Havlinl~51: 0<e~<2,  f l=0 ,  0 < c ( <  1, p = O  
or p 4:0 for decoupled memory. 

4. Zumofen, Klafter, and Blumen~61: ~>  1, f l=0 ,  p = 0 .  They con- 
sider the L6vy walk with the parameter v = 1, i.e., coupled memory of a 
specific type. 
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5. Mantegna(~7): Monte Carlo simulations of the case ~ '>  1, f l=0 ,  
p = 0 for L6vy walks with the parameter v > 1/2. 

6. Araujo, Havlin, Weiss, and Stanley(18): 1 < ~ ' < 2 ,  f l=0 ,  /1=0. 
They consider the generalized L6vy walk with the parameter v = 1 or, in 
other words, the continuous-time generalization of the persistent random 
walk, i.e., coupled memory of a specific type. 

7. See also Kotulski~176 0 < ~ < 2 ,  - 1  ~<fl~< 1, an arbitrary p; in 
which a generalization of a L~vy walk allowing for an arbitrary bias and 
asymmetric tails of jump density f ( r )  is considered. 

3. D E R I V A T I O N  OF RESULTS 

3.1. Unbiased Walks  w i t h  a Finite Mean  Wa i t ing  Time 

In this subsection we assume that: 

(i) The mean jump distance fl=(Ri)=-~,~rf(r)dr=O (with the 
integral absolutely convergent) if 1 < ~ ~< 2, while if 0 < ~ < 1, the mean 
does not exist and we assume the median ofR i to be arbitrary [ i f ~ =  1, we 
deal only with symmetric f(r) with a median at 0]. 

(ii) The mean waiting time r = ( T i )  is finite, i.e., ~' > 1. 

Thus the density f(r) of R; is possibly asymmetric about its mean p, 
which is equal to 0, or, when (Rg) does not exist, f(r) may be asymmetric 
about its median, which may take any value. 

Consider first the degenerate case T; = ro = const. Then in Eq. (3) we 
sum the nonrandom number N, = [_t/ro_] of independent jumps R~, hence 
standard theorems about the limiting distribution of such a sum can be 
applied/2-9) Provided (R,~) is finite, the central limit theorem assures the 
convergence of normed R, to the Gaussian law; when (R~)  is infinite, 
the theory of P. L~vy gives the convergence of appropriately normed R, to 
the L~vy-stable law. 

Now, returning to CTRW, allow T; to be random. We find the 
asymptotic value of N, using renewal theory. The fundamental renewal 
theorem (91 states that l im,_ o~((N,)/t)= I/r; also the strong version can be 
proved, namely 

l i r a  N, (t-TFf = 1 (11) 

with probability l. Hence, for large t, the number N, of jumps in the time 
interval [0, t] equals approximately t/r and the random sum of N, jumps 
Ri has the same limiting distribution as the nonrandom sum of t/r jumps 
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Ri, so the above-mentioned limit theorems are still valid. The rigorous 
proof can be found in Wittenberg c~9~ or, in a more abstract setup, Csorgo 
and Rychlik t28~ or AldousJ 29~ Now, under assumptions (i), (ii), we for- 
mulate the limit theorems for CTRW in full extent. 

If the second moment of Rs is finite, i.e., ~ = 2, then 

Pr((t/r) - I /2c [ '  R, <~ r) --* ~(r)  (12) 

as t--, c,z, where q~(r) is the Gaussian law defined in Eq. (9) and c~ is 
the variance of Ri, that is, c~ =Var(R~)= ( R ~ ) -  (R~) 2. In other words, 
for large t, the density p,(r) of R, is approximately equal to a Gaussian 
density with mean 0 and standard deviation ( t /r)mc~,  that is, the standard 
Gaussian density ~(r )=(2n) -~ /2exp ( - r2 /2 )  with a scale elongation 
(t/r)t/2c I. Thus Eq. (12) can be written as 

p,(r) ~ (t/r)l/2Cl ~ (13) 

If (R,. 2) is infinite, we assume condition (5) to hold, which leads to 

- I" Pr( ( t / r ) - ) /~c ,  l R, <~ r) ---, S,,/j(r) = - ~  s,,/j( x) dx (14) 

as t--* c~, with c2 given by Eq. (16). The function s~.p(r) is the standard 
L6vy-stable density with parameters 0~, fl, which is defined by its charac- 
teristic function 

g=,a(u) = ei''s=./~(r) d r = e x p { - l u l = [ 1 - i f l c o ( u )  ]} (15) 

where co(u)= sign(u) tan(n~/2) for ~ r 1, and co(u)= -sign(u)(2/n) In lul 
for ct = 1. The parameter 0~ is called the index of  stability and determines 
the tail exponent of the density s~./j(r), while the second parameter fl 
( - 1  ~<fl~< 1) governs its symmetry, namely if f l=0 ,  then s~,p(r) is sym- 
metric. For the graphs of various L6vy-stable densities see refs. 2, 27 and 
30. Note that by substituting ~ = 2 and any fl into Eq. (15) one obtains the 
Gaussian characteristic function with mean 0 and variance 2; hence one 
typically associates the Gaussian law with the index of stability ~ = 2 and 
the parameter fl = 0 because of its symmetry. 

The normalizing constant c2 in formula (14) is given by 

c2 = [ b/(c~C~) ] t/, (16) 
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where b is the magnitude coefficient o f f ( r )  introduced in Eq. (5) and the 
constant C~ satisfies 

l i 0 ~  9 
C~= ~ 1  or C~ =--, 0~=1 (17) 

/'(2 - ~) cos(rt~/2)' z~ 

Let us remark that aC,  is the magnitude coefficient of the L6vy-stable den- 
sity s~.p(r) whose tails are determined by the relations (see Janicki and 
Weron, t2~ p. 25) 

s~'p(-r)'~~ , s , p ( r ) ~ a C ~ r  (18) 

as r ~  m, where 0 < ~ < 2  and - 1  ~<fl~< 1. 
One may rewrite formula (14) in terms of the density p,(r) of R, or its 

characteristic function p,(u): under condition (5), for large t, the density 
p,(r) approximately equals the standard L~vy-stable density s~,/j(r) with 
scale elongation (t/v)~/'cz, that is, 

(r 1 r 
P, )~ ( t / r ;1 /~c2S~ .P(~2)  (19) 

or, equivalently, using the characteristic function 

p,(u) - ei"" p,(r)dr~exp{ -[c2ul~(t/r)[1 -iflco((t/r)l/~c2u)]} (20) 

where c2 is defined in Eq. (16) and co(u) in Eq. (15). These alternative forms 
of expressing the asymptotic behavior of R I can be easily applied to each 
equation in Table I. 

Let us indicate some interesting consequences of formula (14). The 
normalizing constant c2 defined in Eq. (16) is the function of the magnitude 
coefficient b and the parameter e; therefore the limiting distribution S~.p(r) 
of R, depends on these constants together with the parameter fl and mean 
waiting time ~, but does not depend on the type of coupling between Ri and 
Tj. Also, when 0 <~  <2,  in contrast to the Gaussian case, the possible 
asymmetry of the limiting distribution is determined by the asymptotic 
quotient of the left and right tails of f(r) which is specified by the 
parameter fl in Eq. (5). The precise form of f ( r )  inside any finite interval 
does not affect the parameters ct and ft. Surprisingly, in the case of infinite 
mean jump distance, i.e., when 0 < e <  1, formula (14) holds for every 
median o f f ( r )  [cf. (i) above], so adding a large nonrandom constant to 
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each jump does not change the limiting behavior of R,. Finally, we remark 
that the asymptotic distribution of R, as t ~ oo says nothing about the 
moments of R,. 

3.2. Biased Walks  

In this subsection we assume that the mean jump distance p = - ( R i )  
exists and does not equal zero, that is, 1 < ct ~< 2 and p :/: 0. 

C a s e  a '  > 1. This assumes a finite mean waiting time r - ( T ; ) .  We 
apply Eqs. (14) and (3) with (R~--p)  instead of Ri, obtaining as t--, co 

/ R ' - - N ' l t  ) 
Pr ~,~ t -~  l/-~c_ ~< r --S~.a(r ) (21) 

This formula is unsatisfactory because N , p  is a random variable. Using 
Eq. (11 ), one could replace N, in Eq. (21) with its asymptotic value t/r, but 
it is not always permissible. To see this more clearly, we need the limiting 
distribution of N,. When t --* oo (cf. ref. 9, XI.5.6) one finds 

( N,  - c , ) 
P r \  < r  --*S=,._](r), 1 < ~ ' < 2  (22) 

where the normalizing constant c 3 = (c~' C=, r/b') - ]/~'r- ] with b' defined by 
Eq. (7) and C=, by Eq. (17). 

1. Suppose that ~ < ~' ~< 2 and write 

R, -- (t /r)p R, - Nip  N, - t/r (23) 
( + ( 

The second term on the right-hand side of Eq. (23) tends in probability to 
0 because of Eq. (22) together with the relation 1/~' < 1/~. Thus applying 
Lemma2,  VIII.2, in ref. 9, we find the same limiting behavior of the 
remaining terms of Eq. (23), so formula (21) yields for t ~  oo 

(R,(_iF~- (t/~)s, ) e r \  ~," --+ S=. p(r), or (24) 

2. Conversely, let us suppose that 2 >t e > or' and write similarly to 
Eq. (23), with o~' replacing cr 

R , - ( t / r ) p  R , - N , p  N , - t / r  
ptll~'c3 P tll~'~ ~3 b t11~,c3 (25) 
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The first term of the right-hand side of Eq. (25) tends in probability 
to 0 because of Eq.(21) together with the relation 1/0d> 1/~. Thus the 
remaining terms of Eq. (25) have the same limit; hence formula (22) yields 
for t---, ~ 

P r \  <r  ~ S~,. _l(r), 0~>~' (26) 

3. We deal with ~ = c t ' = 2  separately. Since ( R , . - ( / t / r ) T i ) = 0 ,  we 
can apply Eqs. (12) and (3) with the random variable (Ri-(l~l[z)Ti) 
replacing Ri, ~2~ obtaining as t ~ o~ 

where c] is the variance of the random variable (Ri-(~L/v) T;), namely 

c~=Var  Ri - ~ T ~  =Var(R~)+ Var(rj)-2~-eov(R~, T~) (28) 
T r- T 

Using once again Lemma 2, VIII.2, of ref. 9, we may replace Y.~--' o T~ with 
t in Eq. (27), because t-~n-(t-Z~Lo T~) tends in probability to 0 (see ref. 9, 
X[.3), obtaining as t ~ oo 

Pr \(R't~(/)![~r-c4 }!' ~<r)--, @(,') (29) 

Let us remark that Eq. (29) also holds for # =0,  yielding then Eq. (12). 

4. Suppose that ~ = c(' < 2. The same procedure for Eq. (14) instead 
of Eq. (12) yields 

P r \  <~r ~S,./~,(r) (30) 

where ~, fl~ describe the domain of attraction of the random variable 
(Ri-(lt/r) T~}, and the normalizing constant c5 is defined like cz in 
Eq. (14) with b replaced by the magnitude coefficient of (R~- (y / r )  T~). 

We therefo{e arrive at some unexpected conclusions: the asymptotic 
behavior of R, is determined by the limiting distribution of bZT= ~ R; if 

~< ~(' and by the limiting distribution of N, if ~ > ct', Note also that the 
normalizing constants c4 and c5 in Eqs. (29) and (30} are sensitive to the 
form of the correlation between R~ and T ,  
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Fig. 2. 
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Graphs of densities h=.(r) for ~' values equal to 0.1, 0.5, 0.6, and 0.7. Notice that the 
densities he(r) are nonzero only at points r> 0. 

C a s e  0 < o ' <  1. This case relates to the infinite mean waiting time 
r - < Ti>. We need the limiting behavior of N, (cf. ref. 9, XI.5.5). As t ~ oo 

0 < c ( <  1 (31) 

where H~,(r) is the "inverse" L~vy-stable distribution defined in Eq. (10) 
and the normalizing constant c6=~'C,,/b' with b' and C~, defined by 
Eqs. (7) and (17), respectively. Since N,--*oo with probability 1, one 
obtains, using the strong law of large numbers, 

R,//L 
lim ~ - - - -  1 (32) 

t ~ c , c  

with probability 1. Hence, by combining Eqs. (31) and (32) we conclude 
that (see also Smith, 121~ p. 27) 

\ t  C 6 / 
0 < ~x' < 1 (33) 



Asymptotic Distributions of CTRW 789 

The graphs of densities he(r) of "inverse" L~vy-stable distributions 
H~,(r) are given in Fig. 2. It is worth pointing out (see Feller, ~9~ XVII.6.10, 
or Zolotarev ~27~) that for 1/2 ~< a '  < 1 the density h~,(r) is simply the cutoff 
stable density s~/~,. _ ~(r), so that it is restricted to the positive half-line only, 
namely 

h~,(r)=(1/oc')sz/~,_i(r/c8)/cs, r > 0  for 1/2~<0c'<1 (34) 

where the constant cs =cos(n0c'/2){-cos[n/(20c')]} ~' is the scale param- 
eter. Note that the cutoff normalization term 1/~' in Eq. (34) results from 
the relation 1/~ '= [ 1 -S ] / ~ ,  _~(r/c8) ] -1 for r = 0 .  An interesting property 
of h~,(r) is (27~ 

h ~ , ( r ) ~ e  - r  as 0~'~0, for r > 0  (35) 

Let us indicate the qualitative differences between the case of biased 
walks with finite mean waiting time and the present case. With increasing 
time, the density of R, in Eq. (33) is subject to a sublinear elongation of 
order t ~', but not to a shift proportional to time t as in Eqs. (24) and (26). 
Moreover, the limiting densities h~,(r) are nonzero only on positive half- 
line and are discontinuous at r = 0. 

3.3. Unbiased Walks wi th  an Inf inite Mean Wait ing Time 

In this subsection we assume that: 

(i) The mean jump distance It = (R~)  =-~-o~ i f ( r )  d r = 0  (with the 
integral absolutely convergent) if 1 <0c~2,  while if 0 <0~< 1, the mean 
does not exist and we assume the median of Ri to be arbitrary [if 0c = 1, we 
deal only with symmetric f ( r )  with a median at 0]. 

(ii) The mean waiting time r = ( T i )  is infinite, i.e., 0 < 0c' < 1. 

Due to the lack of a characteristic time scale and in contrast to all 
previous cases, here the limiting distribution of R, depends on the coupling 
between R~ and T~, so two cases may be distinguished. 

Case 1. Ri Is Independent of 7"i. This relates to the decoupled 
CTRW. One may 'apply  Eq. (31) to Theorem 1 of Dobrusin (26) or Lemma 1 
of Kesten (-'3) to obtain 
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where the normalizing constant c7 = c2ct6/= with c2 and c 6 defined by Eqs. 
(16) and (31) if 0 < ~ < 2 ,  while if ~ = 2  then CT=(Var R~/2) ~/2 r]/= The 
limiting distribution in Eq. (36) is 

U(r) = ~?  S=.p(rx -t/=) H=,(dx) (37) 

or, equivalently, from Eq. (10), 

U(r )=  S=,/j(rx='/=)S=,.t(dx)=Pr -~--~<~r (38) 

where ,I", Y are independent random variables having the distribution 
functions S~a(r) and S~,. l(r), respectively. 

Case  2. Ri D e p e n d s  on  Ti. This relates to a CTRW with a 
coupled memory. We give a specific example of the coupled memory in 
which the limiting distribution of R, differs from the decoupled case, 
namely we assume R,. = Ti and apply Theorem 1, ref. 9, XIV.3, to obtain as 
t ---~ CO 

Pr ~<r = P r  t - t  ~. Ti<~r ~ W(r) (39) 
i = 0  

where the distribution W(r) is concentrated on the interval (0, 1) and has 
the density w(r) = [(sin nct')/n]( 1 - r) -='r ='- l, 0 < r < 1. 

Let us consider the decoupled memory counterpart of Eq. (39) and 
suppose that R; has the same distribution as T~, but R~ is independent of 
Tg; thus, using ct=ct', f l=  1 in Eqs. (36) and (38) directly leads to c7= 1 
and 

Pr(R, / t  <~ r) ~ S=,. l(rx) S=,. I(dx) (40) 

as t ~ ~ .  Thus the limiting distribution in the decoupled case, Eq. (40), is 
concentrated on the half-line (0, ~ )  (see also ref. 27) and differs from the 
limit in the coupled case, Eq. (39). 

4. C O N C L U S I O N S  

1. In this paper we provide a systematic analysis of the asymptotic 
behavior of the distance R, reached at time t for the coupled and decoupled 
memory CTRW in one dimension. 
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2. In contrast to other work the present one is based on renewal 
theory and the limit theorems for random sum of jumps R; instead of 
Tauberian theorems for the two-dimensional Laplace-Fourier transform. 

3. The results obtained here are in agreement with the previous 
studies of the decoupled memory CTRWs and L~vy walks. They give 
insight into the class of possible limiting distributions, which turns out to 
be surprisingly small. Also, it is worth stressing that the transition from the 
decoupled memory to the coupled memory does not change the form of the 
limiting distribution of R,, except for the case of unbiased walks with an 
infinite mean waiting time, which is described in Section 3.3. 

4. This approach provides an analytical form for the normalizing 
constants cl ..... c7 in Table I, which can be used for computer simulations. 
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